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The dynamics of atoms on the surface of a torus is considered. The simple illustration of motion with regard
to rotating and fixed space gives a model of a four-dimensionals4Dd torus. Two different schemes including
rotation and shear in angular frame are used to take into account shears of the surface. In general, a variable-
cell-shape molecular dynamics method analogous to the Parrinello-Raman one is developed. The six dynamical
variables, the three radiuses and the three angles, specifying the deformations of the surface describe the cell
dynamics. The new equations of motion contain no vectors of translations of the cell making its shape
irrelevant for the structural and thermodynamical description of the system. The new method was tested on two
problems concerning structure transformations of two-dimensional lattices.
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In molecular dynamicssMDd the flexibility of a crystal
under periodic boundary conditions is achieved by introduc-
ing additional degrees of freedom for the MD cell. Tradition-
ally the dynamical variables associated with the MD cell are
the Cartesian components of the three vectors defining the
cell f1g. Since the number of the independent cell variables
differs from the number of forces responsible for the cell
deformationsthe six components of the internal stress tensord
a correspondence between them is not direct producing a
number of inconsistencies. At first, Noséf2g has shown that
three extraneous coordinates can be responsible for unphysi-
cal rotation of the cell. Further, one has to guarantee that
equations of motion are invariant to the arbitrary choice of
the lattice vectorsf3g. Of course, all inconsistencies of prior
Parrinello-RamansPRd treatment founded have been suc-
cessfully removed and further development of PR method
has given a powerful means to study systems in the
isoenthalpic-isobaric and isothermal-isobaric ensembles. One
should note though that incorrect number of the variables is
a consequence of the scaling model, which has not changed
in process of all corrections and improvements. Originated
with Andersenf4g and generalized later by PRf1g this model
assumes the atomic coordinates and momenta to be scaled by
the lattice coordinates. Because the scaling the equations of
motion contain the direct dependence on the MD cell coor-
dinates and the corresponding Lagrangian cannot be deriv-
able from first principles. Evidently, this circumstance is
likely not to be the serious one in view of numerous com-
parisons between the results of MD simulations and Monte
Carlo calculations. The more especially as the rigor of the
PR method arises from that fact that the trajectories sample
the correct distribution function, assuming ergodicity. Still, it
does not seem improbable that some features of dynamics
may turn out to be sensitive to this dependence in a greater
degree than to that implicitly contained in the potential of the
lattice due to periodic boundary conditions. So the elimina-
tion of this dependence should be in accordance with the
principle of material-frame indifferencef5g and deserving
motivation for a possible alternative.

A model of the ensemble of particles on the surface of a
6D torus proposed in Refs.f6,7g enables us to avoid in a
natural way the problems mentioned above. This surface can

be represented by the intersection of the three three-
dimensional hypercylinder, given by parametric equations
§a=Ra sinua, ya=Ra cosua, anda=x,y,z, whereRa is the
radius of the cylinder. The closed and finite surface being
isometric to 3D Euclidean spacef8g is particularly suited to
the consideration of the dynamics of a finite ensemble with
periodic boundary conditions. LetRauia be coordinates ofith
particle on the surface of a 6D torus. Then the distance be-
tween the ith and j th particle on the surface issij

=ÎoaRa
2u i j a

2 . The motion ofN particles of the massm on the
surface of torus can be evaluated with the help of the La-
grangian

L =
m

2 o
i=1,a

N

sRa
2u̇ia

2 + Ṙa
2d − f, s1d

which originates from the model of the curved chainf6g.
In order to reduce a 6D dynamics on a torus to the real 3D

atomic dynamics, the pair potential of interaction between
atomsf=o j.i=1

N Ussijd in Eq. s1d is assumed to be dependent
on the arc lengthsij connecting atoms on the surface. Then
the equations of motion from this Lagrangian are given by

ṡia = via +
Ṙa

Ra

sia,

msRaviad· = RaFia,

mR̈a =
saa

Ra

, s2d

where via=Rau̇ia and the forces are defined byFia
=−o jxssijdsij a andxssd=s−1 ]Ussd /]s. The values ofsaa are
the diagonal components of the tensor

Nsab = mo
i=1

N

viavib − o
j.i=1

N

xssijdsij asij b. s3d

Since the three-dimensional curvilinear coordinates on the
surface have the Euclidean metrics, the transverse motion of
atoms on the surface determining by tangent forcesFia is
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quite analogous to the Newtonian one in terms of three-
dimensional Cartesian coordinates. The coupling of the
atomic motion to the cell’s motion is made through the ra-
dius of the curvatureRa. It is driven by the diagonal compo-
nents of the internal stress tensorsaa /V, where V is the
volume per atom. As a result, the system will evolve to a
configuration with constant curvature, which corresponds to
the stress-free state of the crystal in real space.

Basically, the equations of Eq.s2d account for only inde-
pendent extensions in three directions. In particular, these
equations with the same radiusRa=R generate the isoshape
dynamics of Andersen’s kindf5,6g. To include shears to the
dynamics three other independent variables must be intro-
duced. The trial to do that by means of nondiagonal elements
of the curvature radiusf7g failed since the motion equations
obtained do not conserve energy. Below, the necessary defor-
mation will be introduced through the use of new orders of
freedom in an angular frame. In principle, there are two op-
tions available. Apart from a direct shear in angles it can be
done by a rotation of angles with regard to a fixed reference
frame orientated along directions of the main curvatures.

For illustrative purposes the application to the rotation of
angular coordinates of a particle on the 4D torus will be
considered first. Let the rotation of the vectoru=sux,uyd
through the anglew be accompanied by the displacement of
the particlej along the axis of rotation. The Lagrangian as-
sociated with a rigid rotation can be obtained from that of

Eq. s1d by the substitutionu̇→ u̇8= u̇+fv3ug where v
=ẇj /j so that

L =
m

2
fj̇ + Ṙx

2 + Ṙy
2 + Rx

2su̇x − vuyd2 + Rx
2su̇y + vuxd2g − fswd.

s4d

The anglesux anduy in this expression are independent vari-
ables. If, in addition, we relateu and w by the equations
]ux/]w=−uy and ]uy/]w=ux, then the vectoru can be de-
fined in terms of its componentsu x

f and u y
f fixed in space.

Introducing the matrix of rotationA through the anglew, one

substitutesua=Aabu b
f to Eq.s4d. Accordingly the velocityu̇8

in Eq. s4d becomes equal to the apparent velocityAu̇ f thus
eliminating forces of reaction caused by rotation.

The extension to the case of the ensemble of particles on
the surface of the 6D torus is straightforward. The Eulerian
matrix A determines now the rotation of the vectorsui with
respect to a fixed frame so that the Lagrangian takes the form

L =
m

2 o
i=1,a

N

svia
2 + Ṙa

2 + ẇa
2d − f − pV, s5d

where via=RaAabu̇ ib
f and ja=wa is supposed. An external

isotropic pressurep is introduced here additionally.
Following the usual procedure Eq.s5d gives the equations

of motion. It is convenient to write them down not in terms
of the independent variables but in terms ofuia and further-
more make the substitutionsi → r i taking into account the
direct correspondence between the curvilinear and Cartesian
coordinates in the 3D configuration space:

ṙ i = vi + Br i ,

v̇i =
1

m
Fi − Btvi . s6ad

The components of the matrixB can be written as

Bab = sṘa /Raddab + «agbsRa /Rbdvg, s6bd

whereva=ẇa and «abg is the antisymmetric unit matrix in
which sabgd is a cyclic rotation ofsxyzd. The equations for
the curvature variables are

mR̈a =
saa − pV

Ra

,

mv̇a = «abgsRb /Rgdsbg. s6cd

Since dV/V=oa dRa /Ra, only the upper equation depends
on the volume.

The second scheme is to work with a transformation of a

pure shearu̇a8 = u̇a+vub, aÞb in Eq. s4d instead of rigid
rotation. As before the relations]ux/]w=uy and ]uy/]w=ux
require thatua=Aabu b

f . The matrixA with the components
Aaa=coshswd, Aab=sinhswd, aÞb represents a pure shear
whose principal axes are in the diagonal directions of the
right angleu x

fOu y
f . The new transformation is seen as a ro-

tation by an imaginary angleiw in the complex plane fixed in
space. Hence a new Lagrangian differs from that of Eq.s4d
only by the positive sign beforevuy. Therefore, in general,
Eqs. s6ad–s6cd being implicitly dependent on the 3D matrix
A could be reduced to the new equations of motion by the
substitution of the symmetric unit matrix«abg

s =1, aÞb
Þg instead of the antisymmetric one«abg. Use of either
rotating or shear schemes is a matter of convenience. The
second scheme allows one the same values of initial radiuses
and it will be used below.

The additional variables change as the response to the
imbalance of the internal stresssab /V and the external pres-
sure p. Since ]V/]Ra=V/Ra the treatment of the motion
equation of Eqs.s6ad–s6cd in the context of statistical me-
chanics is quite analogous to the one-dimensional casef9g.
The average of the motion equation of Eq.s6cd over time
comes to the relationkssaa−pVd /Ral=0. Besides, in equi-
librium, ksab /Vl=pdab. Detailed discussion of the virial
theorems for a more general isothermic-isobaric ensemble
will be made elsewhere.

The total energy, the momentum and the angular momen-
tum are conserved in the usual constant volume dynamics.
The equations of motion of Eqs.s6ad–s6cd conserve the
energy

E =
m

2 o
i=1,a

N

fsṙ ia − Babr ibd2 + Ṙa
2 + ẇa

2g + f + pV. s7d

As it is seen from Eq.s6ad the momentum conservation law
holds if the initial position of the center of massr c.m=0.
However, as like as in the PR method, the full angular mo-
mentumL =moifsi 3 ṡig is not conserved. To see the reasons
start with the relationoifsi 3Fig=0 for the special case of 4D
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torus whose radiuses areRa=1. In view of Eq.s4d the rate of

change of L=Lv+vsJxx−Jyyd is given by L̇=v̇sJxx−Jyyd
where Lv=moifsi 3vig and Jab=moisiasib. Hence, in an
ideal lattice whenLv=0, the integration gives the conserved
quantity L /v. Only if one selects the initial valueJxx=Jyy,
the cell angular momentum is zero. It corresponds to the
shear diagonal being along a principal axis of inertia of the
system.

Other reason of the quantityL not being conserved can be
understood by the example of extending cylinder with a
screw. A ratio of a screw pitch and the radius decreases with
radius thus making a screwsas well as the MD cell as a
wholed rotate in the development of the cylinder in spite of
no torque acted.sOf course, radial forces of reactions are
responsible for this kind of the rotation in 3-spaced. One
should try to combine both schemes to deal with varying
direction of the shear diagonal thus avoiding the cell rota-
tion. However such complication is hardly justified, since the
cell rotation itself does not influence the dynamics of the
systemf2g and troubles in the analysis of the molecular ori-
entations and crystal structures mentioned in Ref.f2g are
mainly a consequence of non-Euclidean metrics used in the
PR methodf10g.

Two 2D model problems were used to test the new
method proposed herein: the oscillations of the period of the
triangular lattice and the distortion of a square lattice. Par-
ticles of the massm=1 are assumed to interact via a
Lennard-Jones 6-12 pair potential with the force constant at
the minimum of the potential taken to be unity:csrd
= ur−1 ]xsrd /]r ur=1=1. The potential was truncated to take
into account the six nearestsand the eight in the next ex-
ampled neighbors. Zero temperature is assumed because the
basic aspect of interest here is the structural transformation.

The perfect triangular structure is characterized by the
lattice translation vectorsa1=s1,0d, a2=s1/2,Î3/2d and the
curvature variablesRa=1 and w=0. The initial extension
Ry−1=Dy

0=0.01 in the Y direction and the distortionw=Dw
0

=0.01 make the structure transform along the trajectory gen-
erated by Eqs.s6ad–s6cd. Periodic uniform deformation near
equilibrium shown in Fig. 1 occurs with small amplitude.
Therefore, adequate treatment of these results and appropri-
ate test of calculation procedure, which was analogous to
that developed in Ref.f11g, can be given with the help of
harmonic approximation to the total potential in terms of

displacements of the curvatures from their equilibrium val-
ues Dk, k=x,y,w. Retaining the second-order term in the
expression of the total energy

f = sN/2do
kl

gklDkDl , s8d

we obtain the coefficientsgab=Sab
22 , gaw=2Saw

31 , and gww

=4Saw
22 whereSab

mn=s1/Ndoi. jcsr ijdr ij a
m rij b

n . Calculation of the
lattice sum gives the valuesgxx=gyy=9/8, gxy=3/4, gaw=0,
andgww=3/2.

The reduction of the quadratic form of Eq.s8d to a sum of
squares gives the solutionDastd as a superposition of two
normal modesD1 andD2 with the frequenciesv1=Î3/2 and
v2=Î3/4 correspondingly:Dx=D1+D2; Dy=D1−D2. The ex-
pressions for the amplitudesD1=sDy

0/2dcossv1td and D2

=sDy
0/2dcossv2td follow from the initial conditions. Similarly

the shear strain isDw=Dw
0 cossvstd, where the frequencyvs

=Î3/2. The difference between the exact and analytical re-
sults sdot curvesd in Fig. 1 vanishes whenD→0.

It should be noted that small curvatures are equal to their
correspondent components of a plane straineaa=Da and
exy=Dw thus producing the conventional linear stress-strain
relations in a latticef12g.

In the next example, the atoms were arranged initially in a
square structure, whose basis vectors area1=s1,0d and a2

=s0,1d. Being unstable to a small initial shearDw
0 =0.01 the

lattice undergoes a uniform deformation to a triangular struc-
ture while holding the same values of the periodai =a fsee
Fig. 2sadg. Therefore, the instantaneous structure could be
monitored by the length of the diagonala12=a2−a1. Since
a<1 the oscillations ofa12 correlate with those ofw fFig.
2sbdg. The transition is reversible in spite of strong anhar-
monic effect caused by a large amplitude.

The initial part of the time evolution is determined by a
saddle point configuration. For the perfect square lattice and
the next-nearest neighbors taken into account, the coeffi-
cients of the expansion of Eq.s9d are gxy=2e, gxx=gyy=b
+2e, gkl=0,kÞ l, andgww=8e,0, whereb=csRedRe

4 and e
=csÎ2RedRe

4. The equilibrium value of the radiusRe

=0.9831 follows from relationxsRed=−2xsÎ2Red. Therefore,
the period of isoshape oscillations due to a misfit between
the equilibrium and initial lattice parameter is closeTV

<2p /Îb=5.34. Naturally results of all calculations depend

FIG. 1. The vibration of the triangular lattice.sad The time evo-
lution sin dimensionless unitsd of a change of radiuses of curvature
from their initial values.sbd The change of shear strain. Analytical
solutions are shown by the dots.

FIG. 2. Transition from the square to the triangular lattice.sad
The motion of the lattice vectorsa anda12. sbd The time evolution
of the shear angle.
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on neither a number of particles nor a shape of the MD cell.
Evidently also that the condition of a positive definite qua-
dratic form of Eq.s8d coincides with the Born-Karman con-
dition of the lattice stabilityf12g.

The result of this work is a set of dynamical equations
governing the structure of the lattice. Formally, the equations
of motion of Eqs.s6d and s7d are similar to the modified
version of the PR equations using Cartesiansnot scaledd co-
ordinatesf11,13g. However, the method outlined above has
two principal differences. First, only six dynamical variables
describe the cell motion. Basically, these are the three radi-
uses and the three angles determining the deformation of the
torus surface. In fact, the correct number of the cell dynami-

cal variables was suggested earlier by Souza and Martins
f10g. The six components of the dot product between the cell
vectors were used there instead of their components thus
leaving the scaling model unchanged. Therefore this metric-
based formulation appears to be the one of the possible im-
provement of the conventional PR scheme. The second dif-
ference is in the form of the cell box. The matrixB does not
depend on the lattice vectors making the orientation and the
shape of the MD cell irrelevant for the structural and ther-
modynamical description of the system. In particular, the
molecular dynamics apart, the new method can be useful to
reconsider well-known relations obtained for infinite crystal
with the internal stress of the system taken into account.
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